
COMPEX, INC. ANET-4 (VER. 1.0)

NIC Type ArcNet
Chip Set NCR 90C26
Data Bus 8-bit ISA
Network Transfer Rate 2.5Mbps x 4

Topology Star

Wiring Type RG-62A/U 93ohm coaxial

Boot ROM Available

CONNECTIONS						
Function	Label	Function	Label			
RG-62A/U 93ohm coaxial connector	CN1	RG-62A/U 93ohm coaxial connector	CN4			
RG-62A/U 93ohm coaxial connector	CN2	Daisy-chain connector	J1			
RG-62A/U 93ohm coaxial connector	CN3					

EXTENDED RANGE CONFIGURATION						
Response Time	Recon Time	JP1	JP2			
75.7 uS	840 mS	Open	Open			
283.4 uS	1.68 S	Closed	Open			
561.8 uS	1.68 S	Open	Closed			
1.1186 mS	1.68 S	Closed	Closed			
Note: This setting should only be changed when the length of the ArcNet segments exceed 6000 meters.						

Continued on next page. . .

. . . continued from previous page

NODE ADDRESS								
Setting	SW1/1	SW1/2	SW1/3	SW1/4	SW1/5	SW1/6	SW1/7	SW1/8
1	On	Off						
2	Off	On	Off	Off	Off	Off	Off	Off
3	On	On	Off	Off	Off	Off	Off	Off
4	Off	Off	On	Off	Off	Off	Off	Off
5	On	Off	On	Off	Off	Off	Off	Off
250	Off	On	Off	On	On	On	On	On
251	On	On	Off	On	On	On	On	On
252	Off	Off	On	On	On	On	On	On
253	On	Off	On	On	On	On	On	On
254	Off	On						

Note: A total of 253 node address settings are available. The switches are a binary representation of the decimal node addresses. SW1/8 is the Most Significant Bit and switch SW1/1 is the Least Significant Bit. The switches have the following decimal values: SW1/8=128, SW1/7=64, SW1/6=32, SW1/5=16, SW1/4=8, SW1/3=4, SW1/2=2, SW1/1=1. Turn off the switches and add the values of the switches that are off to obtain the correct node address. (Off=1, On=0) Addresses 0 and 255 are reserved and should not be used.

BASE I/O ADDRESS							
Setting	JP4/A	JP4/B	JP4/C	JP4/D	JP4/E	JP4/F	
000h	Open	Open	Open	Open	Open	Open	
010h	Closed	Open	Open	Open	Open	Open	
020h	Open	Closed	Open	Open	Open	Open	
030h	Closed	Closed	Open	Open	Open	Open	
040h	Open	Open	Closed	Open	Open	Open	
3B0h	Closed	Closed	Open	Closed	Closed	Closed	
3C0h	Open	Open	Closed	Closed	Closed	Closed	
3D0h	Closed	Open	Closed	Closed	Closed	Closed	
í 3E0h	Open	Closed	Closed	Closed	Closed	Closed	
3F0h	Closed	Closed	Closed	Closed	Closed	Closed	

Note: A total of 64 base address settings are available. The jumpers are a binary representation of the decimal memory addresses. JP4/A is the Least Significant Bit and jumper JP4/F is the Most Significant Bit. The jumpers have the following decimal values: JP4/F=512, JP4/E=256, JP4/D=128, JP4/C=64, JP4/B=32, JP4/A=16. Close the jumpers and add the values of the jumpers that are closed to obtain the correct memory address. (Closed=1, Open=0)

Continued on next page. . .

. . . continued from previous page

SHARED RAM ADDRESS							
Setting	JP5/A	JP5/B	JP5/C	JP5/D	JP5/E		
00000h	Open	Open	Open	Open	Open		
08000h	Closed	Open	Open	Open	Open		
10000h	Open	Closed	Open	Open	Open		
18000h	Closed	Closed	Open	Open	Open		
20000h	Open	Open	Closed	Open	Open		
í D0000h	Closed	Open	Closed	Open	Open		
D8000h	Closed	Closed	Open	Closed	Closed		
E0000h	Open	Open	Closed	Closed	Closed		
E8000h	Closed	Open	Closed	Closed	Closed		
F0000h	Open	Closed	Closed	Closed	Closed		
F8000h	Closed	Closed	Closed	Closed	Closed		

Note: A total of 32 base address settings are available. The jumpers are a binary representation of the decimal memory addresses. JP5/A is the Least Significant Bit and jumper JP5/E is the Most Significant Bit. The jumpers have the following decimal values: JP5/E=524288, JP5/D=262144, JP5/C=131072, JP5/B=65536, JP5/A=32768. Close the jumpers and add the values of the jumpers that are closed to obtain the correct memory address. (Closed=1, Open=0)

INTERRUPT							
Setting	JP3/A	JP3/B	JP3/C	JP3/D	JP3/E		
2	Closed	Open	Open	Open	Open		
3	Open	Closed	Open	Open	Open		
4	Open	Open	Closed	Open	Open		
5	Open	Open	Open	Closed	Open		
7	Open	Open	Open	Open	Closed		

MISCELLANEOUS TECHNICAL NOTE

The daisy-chain connector may be used to connect up to three extender cards for a total of 12 ports. For additional information see document N1769.